hysop.symbolic.base module¶
- class hysop.symbolic.base.DummySymbolicScalar(name, value=None, view=None, **kwds)[source]¶
Bases:
ScalarBase
,Dummy
Symbolic scalar dummy symbol.
Symbols are identified by name and assumptions:
>>> from sympy import Symbol >>> Symbol("x") == Symbol("x")
True >>> Symbol(“x”, real=True) == Symbol(“x”, real=False) False
- default_assumptions = {}¶
- dummy_index¶
- class hysop.symbolic.base.DummySymbolicTensor(name, shape, init=None, scalar_cls=None, **kwds)[source]¶
Bases:
TensorBase
Dummy symbolic tensor symbol.
Create a new TensorBase.
- class hysop.symbolic.base.ScalarBase(name, value=None, view=None, **kwds)[source]¶
Bases:
ScalarDataViewHolder
,ScalarBaseTag
Base for symbolic scalars.
- class hysop.symbolic.base.ScalarBaseTag(idx=None, **kwds)[source]¶
Bases:
object
Tag for object that can be inserted as element of tensors.
- property idx¶
- class hysop.symbolic.base.ScalarDataViewHolder(holded_data_ref=None, holded_data_access=None, **kwds)[source]¶
Bases:
ValueHolderI
- class hysop.symbolic.base.SymbolicScalar(name, value=None, view=None, **kwds)[source]¶
Bases:
ScalarBase
,Symbol
Symbolic scalar symbol.
Symbols are identified by name and assumptions:
>>> from sympy import Symbol >>> Symbol("x") == Symbol("x")
True >>> Symbol(“x”, real=True) == Symbol(“x”, real=False) False
- default_assumptions = {}¶
- class hysop.symbolic.base.SymbolicTensor(name, shape, init=None, scalar_cls=None, **kwds)[source]¶
Bases:
TensorBase
Symbolic tensor symbol.
Create a new TensorBase.
- class hysop.symbolic.base.TensorBase(shape, init=None, name=None, pretty_name=None, scalar_cls=None, scalar_kwds=None, make_scalar_kwds=None, value=None, set_read_only=True, dtype=<class 'object'>, **kwds)[source]¶
Bases:
ndarray
Base for symbolic tensors. A tensor is a read-only npw.ndarray subclass containing symbolic scalars or symbolic expressions.
Create a new TensorBase.
- static __new__(cls, shape, init=None, name=None, pretty_name=None, scalar_cls=None, scalar_kwds=None, make_scalar_kwds=None, value=None, set_read_only=True, dtype=<class 'object'>, **kwds)[source]¶
Create a new TensorBase.
- elementwise_fn(fn)[source]¶
Apply function fn on each element of the tensor and return the result as a Tensor.